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High-energy Delbruck scattering at large angles 

A I Milstein and R Zh Shaisultanov 
Institute of Nuclear Physics, 630090, Novosibirsk, USSR 

Received 14 December 1987 

Abstract. An expression for the high-energy Delbruck amplitude at large scattering angles 
is derived. This expression is exact in the parameter Za. The consideration is based on 
the use of the relativistic electron Green function in a Coulomb field. 

1. Introduction 

The elastic scattering of a photon in a Coulomb field via virtual electron-positron 
pairs (Delbruck scattering, Delbruck (1933)) is one of the few non-linear quantum 
electrodynamics processes that is directly observable in experiment. The situation 
when w b m ( w  is the photon frequency, m is the electron mass and h = c = 1) is most 
favourable (see Papatzacos and Mork 1975a, Jarlskog et a1 1973, Kane et a1 1986). 

At present the amplitude of the process is studied in detail in the lowest-order Born 
approximation (see Constantini et a1 1971, Papatzacos and Mork 1975b, Bar-Noy and 
Kahane 1977, Cheng et a1 1982). The corresponding calculations have been carried 
out for an arbitrary value of the momentum transfer A (A = k2 - k , ;  k l  and k2 are the 
momenta of the incoming and outgoing photons, respectively; Ikll = lk2/ = U ) .  The 
amplitude, exact in Za (Zlel is the charge ofthe nucleus, a = e’ = & i s  the fine-structure 
constant, e is the electron charge), has been found by Cheng and Wu (1969, 1970, 
1972) in the limit w / m  >> 1 with A<< w. They have solved the problem, summing in a 
definite approximation the Feynman diagrams with an arbitrary number of photon 
exchange with a Coulomb centre. It appears that the Coulomb corrections at Za - 1 
drastically change the result as compared to the Born approximation (Cheng and Wu 
1969, 1972). 

The main contribution to the total cross section at w >> m comes from the momentum 
transfer A - m, with scattering angle Bo- A / w  << 1. The characteristic impact parameter 
p - l / A .  Therefore, the value of the angular momentum 1 - pw - w / A  proves to be 
large and it is possible to employ the quasiclassical approximation. The corresponding 
approach intended for a description of quantum electrodynamics processes in a 
Coulomb field at high energies has been developed by Milstein and Strakhovenko 
(1983a, b). In particular, the dependence of the total cross section on the charge of a 
Coulomb centre has been defined. The consideration has been based on the use of 
the quasiclassical Green function obtained from the integral representation for the 
electron Green function in a Coulomb field (Milstein and Strakhovenko 1982). 

In the past ten years, elastic photon scattering at large angles has been studied 
intensively experimentally (see, for example, Rullhusen et a1 (1983), Kasten et a1 
(1986) and Kane eta1 (1986)). The results of these experiments show that the Coulomb 
corrections to the Delbruck scattering amplitude must be taken into account. 
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In  the present paper, in order to study the Coulomb corrections the exact Delbruck 
scattering amplitude is found in the limit w /  m >> 1, A/ m >> 1. At 3 - w the scattering 
angle 8, (sin(t8,) = A / 2 w )  is not small and the characteristic angular momentum 1 - 1. 
Therefore in this case the quasiclassical approach is not valid and one has to develop 
another approach. At m << A<< w the amplitude obtained agrees with the results of 
Cheng and  Wu (1972), and Milstein and Strakhovenko (1983b). It has been shown 
by Cheng et a /  (1982) that the Delbruck scattering amplitude scales in the formf( 8,)/w 
as w / m  + CC with 8, fixed. Our explicit calculation confirms this statement. 

2. Calculation of the Delbruck amplitude 

Let an  incoming photon produce at the point r, a pair of virtual particles that is 
transformed at the point r, into an outgoing photon. In the Furry representation, the 
corresponding amplitude is 

M = 2ia d r ,  dr, exp[i(k, - r l  - k2 - r2)] de ,  de, S(w - e ,  + e2)  

(1) 

I 
x T r  i?,G(r,, r21~2)ETG(r, ,  r l l E 1 )  

I 
where e ,  and e,  are the photon polarisation vectors, e* = e , y p ,  y, are Dirac matrices 
and G ( r , ,  r Z ( E )  is the electron Green function in a Coulomb field. As is known, the 
function G ( r , ,  r 2 /  E )  has, in the complex plane E ,  cuts along the real axis from -CO to 
-m and from m to CO, which correspond to the continuous spectrum. It also has 
simple poles, corresponding to a discrete spectrum, in the interval (0, m )  for an  attractive 
field under consideration. According to the Feynman rules, G( e )  is equal to G (  E +io) 
at E > 0 and is equal to G( E -io) at E < 0. The integral representation for the electron 
Green function in a Coulomb field which is valid in the whole complex plane E has 
been obtained by Milstein and Strakhovenko (1982). Let us represent the 6 function 
in (1) in the form 

- )*  (2) 
1 

S (  w - E ,  + E2)  = - 
2 n  i (  w-El+eZ+iO w-E,+eZ-iO 

Using the analytical properties of the function G, it is possible to deform the contour 
of the integration with respect to E ,  and e2 in (1) in such a way that, with the first 
term in (2),  the integrals with respect to e l  and E ,  encircle the right- and left-hand 
cuts, respectively. With the second term in (2) ,  the contours of integration with respect 
to and  e2 will encircle respectively the left- and right-hand cuts. The contribution 
of the discrete spectrum can be neglected when w >> m. Performing the stated transfor- 
mations, we obtain 

d r ,  d rz  exp[i(k, r, - k2 r,)] 
n 
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where 6G( E )  = G ( E  +io) - G ( F  -io) is the discontinuity of the Green function on the 
cut. Note that each term in equation (3)  corresponds to the contribution of the 
non-covariant perturbation theory diagram. Using equations ( 19)-( 21) of Milstein and 
Strakhovenko (19821, we have for the function 6G at m = O  

3: i 
d s  exp{ i [*2Zas+(~ l ( r ,+  r l )  coth(s ) -  T T V ] }  

where ~ = ( l ' - ( Z a ) ~ ) '  ', x = n ,  n 2 ,  B = ( d / d x ) ( P , ( x ) - P , - , ( x ) ) ,  A = l ( d / d x ) ( P , ( x ) +  
P I . . , ( x ) ) ,  y = 2 1 ~ / G / s i n h ( s ) ,  n, = r l / r t  ( i  = 1,2).  In formula (4) JZy(j) are Bessel 
functions, P I ( x )  are Legendre polynomials, and J i , ( y )  = (d /dy ) J? ,  ( y ) .  

Let us make the following change of variables: rl = Rt, r2 = R/t ,  E, ,?R = P , , ~ .  It is 
easy to see that the substitution r, + -rl does not change the trace in (3). Using this 
fact, one can show that the sum of two terms in (3) is equal to the first term, where 
the integration over R is extended from -a: to w. In consequence, we have the 
following integral over R :  

3: d R c o s ( w R a )  in- 
-= wR - p ,  -pz+iO w 

- -- - exp[-i/al(p,  +Pd1  

where a = A L  n , t  - A 2  - n Z / t ,  
now factorised the integrals with respect to the variables p , ,  p : ,  sl, s 2 .  

k , . ? / w .  One can see from (5 )  and (6) that we have 

Let us consider a typical integral (other integrals can be calculated similarly): 

c p = 2 Z c ~ ~ + p ( t + l / t )  co th i s ) - rV  

where the relation J2.(e'-x) = e'""Jz.(x) is used. Next we change over to the variable 
p/sinh(s) + p  and deform the contour of the integration over p in the second term so 
that the integral is extended from 0 to -a: ( p  + p e-'"). As a result, we have 

N =e- ' nu  jox dpJ2 , (2p)  1' d s  sinh(s) 
x 

x exp{i[ p (  t + 1/ t )  cosh(s) + 2Zas  -pial  sinh(s)]} 

= TT exp[p(s,+$.rr) - ~ T T V ]  
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where p =2iZa, H : ) ( x )  is the Hankel function of the first kind, fi:)(x) = 
( d / d x ) H z ’ ( x ) ,  p = [ ( t + l / t ) 2 - a z ] l ’ 2 ,  sinh(so) = l a l / p ,  cosh(s , )=( t+ l / t ) /p .  Calcu- 
lating the integral over s in ( 7 )  we have made the change of variable s + s + s o ,  and 
we have used the standard definition of the Hankel functions. Taking the integrals 
over s, and s2, as in deriving equation ( 7 ) ,  we get for the amplitude M (8): 

where 

The functions Q v ( p )  and F,(p) are expressed via hypergeometric functions (see the 
appendix). The subscripts 1, 2 in A , ,  B,, v,, A*,  B 2 ,  v2 denote the dependence of 
these quantities on 1, and I * ,  respectively (for the definition see after equation (4)). 
The coefficients Zi are 

Z , = ( n ,  .n , ) ( l+n,  . n 2 ) ( e l  .eT)+(e,  - [n,xn, l ) (eT - [ n , x n J )  

+ (1  + n ,  n2)[eT x e,] [ n 2  x n , ]  

&=(e ,  (n,+nz))(eT * (n ,+nz ) ) - (e ,  - eT)( l+n,  * n2)  

These coefficients appear as a result of taking the trace. 
Let us now discuss the polarisation properties of the amplitude. In terms of linear 

polarisations, by virtue of parity conservation, the amplitude differs from zero only if 
the polarisations of the incoming and outgoing photons both lie in the scattering plane 
(Mil) or are perpendicular to it ( M , ) .  The corresponding polarisation vectors are 

e l , l = ( A ~ - P A l ) / ( l  - P ~ ) ” ~  
e , , = e 2 ~ = [ A , x A 2 ] / ( l - P 2 ) 1 ’ 2  

where P = A ,  A * .  Therefore the tensor T” = e;&, is of the form 

T ;  = 6 + P, ( A ; A ; + A ; A  J,  ) - - ( A ; AJ, + A ;A-:) 

e211 = (PA,-A1)/(1 - P z ) ” 2  
(11) 

e, * ell = 0 ell1 * e211 = P 

1 

1 - P  1 - P  
(12) 

1 
Ti  = A A’, - 1-p2( A A: + A \A’,) + 4 ( A ‘ ,  A’, + A;AJ2). 

1 - P  
For helical amplitudes, the following relations hold: M,,  = M--  = f( M i ,  + M L ) ,  M+- = 
M-+ = f( MII - AIl); the helical polarisations are defined as e?,, = (5 x A I s 2  f i5)/42, 
where g = A ,  x A 2 / ( l - p 2 ) ” 2 .  



High-energy Delbruck scattering at large angles 2945 

Note that the amplitude M is a function of A ,  * A,  when all the integrals are taken. 
Therefore one can use a very convenient trick: let us multiply both sides of (8) by 
6(Al A2-P)/8r2 and take the integrals over the angles of unit vectors A ,  and A , ,  
using the relation [IdAI dAz 6(A, * A2-p)/87r2= 1. After doing this, the integrand for 
M in (8) will depend on n ,  and n2 only in the combination n ,  n 2 .  So the integration 
over n ,  and n, reduces to an integration over x = n ,  n , .  

Let us now consider the integral 

Using the well known expansion for a plane wave in spherical harmonics, we get 

where j l (x)  = ( ~ / ~ X ) ” ~ J ~ , ~ , ~ ( X )  is the spherical Bessel function, and $ is the angle 
between the vectors q ,  and q 2 .  In order to take the integral 

g ” = T  dA, dA2S(A, .A,-P)exp[i(q,  * A , - q 2 . A 2 ) ] T v  (15) 8 r  ‘I 
one can replace A ,  by -iV,, and A, by iVq2 in T” (12), and act on g (13) by the 
operator obtained. We shall illustrate our further calculations by the consideration of 
a typical integral: 

where 9 ( p )  is a function of the variable p = [( r + 1/ t ) *  - az]” ’ ,  a = A I  - n ,  t - A2 n,/ t 
(see (7)). 

Making the identical transformation 

substituting (17) into (16) and using (13) we obtain 
s 

G = 2 2 (21 + 1 ) lox $ lox dx 9 ([ ( f + 1 / t )’ - ~ ~ 1 ’ : ~ )  
I =o 

Let us use now the following formula for a product j /(xl)j l(x2) (Gradstein and Ryzhik 

sin( x )  
x 

Jol dz  cos(xz) 
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With (19), we take the integral over 5 and then over x. We obtain 

x a([( t + l / t ) ,  - z2(  t 2 +  l / t2-2y)]’’2).  (20) 

Then we make a transformation as in equation (17): 

Substituting (21) into (20) and making the change of variable t = “ + ” ,  we carry out 
the integration over cp and y. We obtain 

X 

G = t  (21+ 1 ) S ( P ) P l ( n l  nz) 50’ P dP  9 ( P )  I,’ d z  IO= d5h(5z2) 
I = O  

x ( i f + ’  exp[ i t ( l  -+p71Ht ’ (5 (1  -z*) )  

1 
+-exp[-i5(1 , I + ]  - f p 2 ) 1 ~ ~ 2 ’ ( 5 ( 1  - - L 2 ) ) ) .  (22) 

Here H;’ and H r ’  are the Hankel functions of the first and the second kind, 
respectively. One can now take the integral first over z and then over 5, using the 
relations (Gradstein and  Ryzhik (1963), pp  692, 725) 

where QY are the Legendre functions. The representation of the Hankel function 

H ~ ’ . ~ ’ ( X )  = ~ ~ ( x )  * (2i/ .rr).?O(x) .?O(X) = ( d / d v ) J , b ) l , = o  

has to be used as well. Finally, one obtains, for the integral G 

where S , ( p )  is 

S 1 ( p ) = f ( - l ) ‘ ” 4 ( 2 - p ) q ( l  - t P 2 ) + 9 ( P - 2 ) Q , ( t p Z - 1 )  (25) 
4 ( x )  = ( d / d v ) P v ( x ) l v = / .  Then it is easy to take the integrals over n ,  and n, in the 
amplitude M (8). The corresponding integrals are expressed via the Wigner 3-j symbols. 
In the same manner, one can obtain the expression for the whole amplitude M. 

As mentioned above, there are two amplitudes MIl and M A  which differ from zero, 
in terms of linear polarisations. It is convenient to consider the combination M I  = 
f ( M i i + p M , )  and the amplitude M2 5 M,. Let us start with the evaluation of M I .  
After the integration over A I  and A 2 ,  we obtain that the coefficients (10) in equation 
(8) for the amplitude MI should be replaced by 

X 

2, = f  c (2I+1)PI(P)L 
I = O  
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f6 = - ( 1 - x2  Pi ( x [ j i ( 42 )j/ ( 4 I U q1 - ji ( 4 )j/ ( 9 2  I /  921 

where x = n, . n 2 ,  j i ( x )  = (d/dx)j ,(x),  q1 = Ct, q2 = </ t. The representations for the 
products of Bessel functions in (26) are given in the appendix. Then we take the 
integrals in the sequence used in deriving equation (24). We represent our amplitudes 

as follows: 

After cumbersome calculations we obtain for the coefficients Ci in MI the following 
expressions: 

C4 = - $[ 3S3 + ( 2 ~  - 1 ) (  S4 + 2S2) + S,5] Y s P / ( P  ). 

Here a = 1 -ap2,  p = A I  * A 2  = cos B o .  The coefficients y, are the integrals over x = 
n ,  * n,: 

/ , t i 2 + /  yI  = i’ dx(1  + x ) P d x ) B l ( x ) B Z ( x )  Y3= (-1) l l l 2 Y l  

y2 = 1’ d x i l  -x ’ )P~(x )B , (x )B , (x )  

- 1  

11IzYr (29) y 4 =  (-1)/,++/+1 
- 1  

y5= i:l dx(1 -x2 )P l (x )Al (x )BZ(x) .  

These coefficients are expressed using Wigner 3-j  symbols (see the appendix). The 
functions S, appear as a result of integration over the parameters 5 and z (compare 
with equations (23)-(25)): 

s, =~(-1) ’ ’ ’ -9(2-p)~/+6(p-2)Q/ 
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s* = 

s3 = ( - ly+I  0 ( 2  - p )  

2 Q/ 

s4 = 
21+ 1 21-1 21+3 2 ( 2 f + l )  

( I +  1 ) Q i - I )  2 
21-1 21+3 21+1 

where the Legendre polynomials and (recall that 4 ( x )  = (d/dv)Pv(x)lv=f)  depend 

that C, have no singularities at p = 2. By virtue of the momentum conservation 
M ( Z  = 0) = 0 for the case under study, A # 0. It is convenient to subtract, from the 
integrand of M in (27), its value at Z = 0. This subtraction removes fictitious divergen- 
ces, which cancel after summation over and 1. In the following such a subtraction 
is assumed to be made. 

o n q = 1 - '  2p  * , and the Legendre functions Q1 depend on p = f p 2  - 1. It is easy to verify 

The calculations of the coefficients C, in M 2  are performed in a similar fashion: 
2 

cl = ( P  ) ( y1 + [PYzs2 + f y6( s3 + s6 )  - ?;I) + 71 ( s3 - s7,) i ( P  

(31) 

1 ;  2 
c2 = pf ( P  ( Y l  S I  + 2 [ P  74 '52  + YS( s3 + s6) - Y 9 s 3 1  + 7 ( 1 - a )  y3s2pi ( P  

c3 = ( 4 / P 2 ) Y 3 ( 4 +  SdPXP)  

c 4 = ~ { P r , [ ( 2 a - 1 ) S z + S 3 1 -  Y10[(2~-1)s3+szI 
PAP) 
1 - P  

+fY11[(2c  - l ) ( s 3 +  s6)+ s41). 
The coefficients y6-11 are defined by 

Y6 = 5 dx ( - x2) P/ (x)  B1 (x  B2( x 
- 1  

y7 = j:l dxx(1  -x')PXx)B,(x)B,(x) 

yl, = J ' dx(1 -x ' )Pf(x)Al(x)B2(x) .  
- 1  
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It is seen that the amplitude M (27) has a scaling form M = f (  6 , ) / w  as w /  m -$ a, with 
6, fixed, in agreement with the result of Cheng et a1 (1982). 

Let us discuss the asymptotic form of MI and M 2  at Bo<< 1 (A<< w ) .  In  this case 
the main contribution to the amplitudes comes from the region lI - I ,  - I - l / O o ,  p - eo, 
1 + x - 6;. So one can neglect (Za)'  in the quantities = [ l f , 2  - (Za)2]"2 .  After this 
one can take the sum over I ,  and 1, before the integration over x ((29) and (32)). This 
summation can be performed using the formulae in the appendix of Milstein and 
Strakhovenko (1983b). Then, replacing the Legendre polynomials by its asymptotics 
we obtain 

where y = lp. We also have P , ( p )  = Jo(lOo) and P/(X) = (-l)'J,,(IO), where x = -cos 6 2 
-1 + + O Z .  Substituting these asymptotics into (27) we see that (-1)' disappears and we 
can replace the summation over I by an integration. Performing this integration and 
then taking the integral over p and pl,? (see the definitions of Q v  and F, (9)), we 
obtain ultimately for the small-angle asymptotics: 

M ,  = -i- [ l - 2 ( z a ) * I - l  
(341 
\ -  I 

i8a 
we0 

M,= M 1 + y ( Z a ) ' [ Z a  Im $'(l -iZa)- 13 

where $(x) = (d/dx)  In T(x), @(x)  = (d/dx)$(x).  Note that MI + M++ as p + 1. Our 
result (34) coincides with the results of Cheng and Wu (1972), and Milstein and 
Strakhovenko (1983a, b). The asymptotics (34) are imaginary quantitities, but at Bo- 1 
the real parts of the amplitudes (27) are not equal to zero. 

3. Discussion 

Equations (27), (28) and (31) solve, in general form, the problem of calculation of 
high-energy Delbruck amplitude at large angles. One should bear in mind that in 
scattering by atoms the point-charge approximation is valid if A<< R-I, where R is the 
radius of the nucleus. Then one has to know the corrections of order ( m / w ) ,  to 
determine w for which our results are applicable. This problem is very difficult, but 
it can be solved using the technique of the present paper. We hope that the appropriate 
photon energy w is not very high. 

The problem of numerical calculations with the use of (27) and comparison with 
the experimental data is an independent one. Note that the terms with a small and 
1 give the contribution to the amplitude at 8,-  1. We will discuss this problem 
elsewhere. 
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Appendix 

In this appendix we discuss the properties of the functions introduced in the text. Let 
us consider the functions and F,(p)  (see (9)). These functions are expressed 
via the hypergeometric functions. I f  p > 2, we have 

I-( 1 + + f p ) r (  1 + - fp)  
1 - ( 2 ~ +  1) 

U + l  

1 + v + fp, 1 + U - fp; 2~ + 1; 7 
p +10 

If p < 2, the formulae for Q v  and F, are the ana.lticr. continuation of ( A l ) .  The 
function , F , ( p )  has no singularities at p = 2: Fv(2)  = -i[27r( u’-ap2)] - ’  = - i / 2 d 2  
(recall that V* = I z + $ p 2 ) .  The function @ ” ( P I  has a singularity as p + 2. However, the 
coefficients at the divergent terms do  not depend on Z :  

+ 44 1 + V + fp + $( 1 + V - fp 1 - 4( 1 ) - $(a]). (A21 

We give now the formulae for the products of spherical Bessel functions, which 
are needed for the calculations, as in the derivation of equation (22). Using (19) one 
can obtain that 

Here q1 = i t ,  q2 = (/ t, x = ( t 2  + 1/ t 2  - 2 ~ ) ” ’ .  
To obtain the formula for the productjj(q,)j j(  q 2 ) ,  one has to perform an  integration 

by parts over 6 (see (18)).  Then, with the use of the second relation in (A31 we get 
that this product may be replaced by 
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Let us calculate now the coefficients y ,  (see (29) and (32)). As mentioned above, 
these quantities are expressed via the Wigner 3 - j  symbols. We use recursion relations 
for the Legendre polynomials (see e.g. Gradstein and Ryzhik (1963)): 

d 
( 1 + x) ~i P/(x) - p/--i (XI)  = 

(1- 

P ; ( x )  =+[P;+l(x)+ I ( / +  l ) P / + l ( X ) ]  

pr(x) + S - l ( x ) )  

d 
dx  ( P , ( x )  - P , - l ( X ) )  = Pf (x )  - P f - l ( X )  

and the following formula (see Edmonds (1957, p 63): 

where P ; " ( x )  are the associated Legendre polynomials, ajtl = ( 
signs of m, m1 and m2 are chosen so that m = m ,  + m2.  Let 

f ;  = P,+P,-, ,  g, = P,-P,-1, f ;  = Pf+P1- , ,  g;  = F 

Y 1 = !  dxP/(x)[~l~,l ; l(x)frz(x)+gf,(x)g;, ix)l  

With the help of (A5) we have 

- 1  

r i  

- P,'-l. 
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